Preliminary communication

THIOLATE-HYDRIDE COMPLEXES OF MOLYBDENUM(II)

(CAROLINE SHORTMAN and RAYMOND L. RICHARDS*

AFRC Unit of Nitrogen Fixation, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received January 21st, 1985)

Summary

The stable thiolate hydrides trans- $[MoH(SR)(dppe)_2]$ (dppe = Ph₂PCH₂CH₂PPh₂; R = Prⁱ, Bu^t, C₆H₂(C₃H₇)₃-2,4,6; C₆H₂(CH₃)₃-2,4,6 or C₆H₂Br-4, (C₃H₇)₂-2,6) have been prepared by treatment of trans- $[Mo(N_2)_2 - (dppe)_2]$ with RSH.

Although mononuclear hydride complexes of molybdenum with thiolate co-ligands have relevance to current theories of the function of the active site of nitrogenase $\{1\}$, their preparation has hitherto proved elusive. Indeed, only a few metal complexes of this type have been isolated [2,3,4,5], although they have been observed as reaction intermediates $\{3,4\}$. This appears to be a result of the tendency for reductive elimination of the parent thiol, e.g. $[IrH(SPh)Cl(CO)(PPh_3)_2]$ loses PhSH rather easily [5].

However, during the course of our studies of the reactions of dinitrogen complexes with thiols [6], we have been able to isolate the first examples of stable mononuclear hydride-thiolate complexes of molybdenum as green crystals (A, eq. 1).

$$trans-[Mo(N_2)_2(dppe)_2] + RSH \xrightarrow{\text{THF}} 60^{\circ}C \xrightarrow{\text{trans}-[MoH(SR)(dppe)_2]} + 2N_2 \qquad (1)$$
(A)

 $(R = Pr^{i}, Bu^{t}, C_{6}H_{2}(C_{3}H_{7})_{3}-2,4,6; C_{6}H_{2}(CH_{3})_{3}-2,4,6 \text{ or } C_{6}H_{2}Br-4(C_{3}H_{7})_{2}-2,6)$

The use of bulky R groups is essential for the stability and isolation of compounds A. If smaller substituent groups (R') are employed, bis(thiolate) complexes B are obtained (eq. 2) [4].

$$trans \cdot [Mo(N_2)_2(dppe)_2] + 2R'SH \rightarrow trans \cdot [Mo(SR')_2(dppe)_2] + H_2 + 2N_2 \qquad (2)$$

$$(R' = C_6H_4X-4 (X = H, F, Cl, CH_3, (B) OCH_3, NH_2); Et, Pr^n or Bu^n)$$

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

Reactions 2 proceed via green intermediates [4] which are probably thiolate hydrides, but they could not be isolated.

Compounds A are assigned the *trans*-configuration on the basis of their singlet ³¹P NMR spectra (Table 1). Their ¹H NMR spectra (Table 1) show the hydride resonance as a quintet in the range -3.98 to -4.98 ppm. The analogue *trans*-[IrH(SMe)(dppe)₂]PF₄ shows a quintet ¹H resonance at -14.8 ppm [7].

TABLE 1

THIOLATO HYDRIDI	COMPLEXES	OF MOLYBDENUM(II)	[MoH(SR)(dppe) ₂	J
------------------	-----------	-------------------	-----------------------------	---

R	ν (MoH) (cm ⁻¹) ^a	$\delta(^{1}H)$ (ppm) b	² J(PH) (Hz)	δ(³¹ P) ppm ^C
Bu ^t	1700	-3.98	45.04±0.01	-57.0
Pr ⁱ	1690	-4.85	45.5 ±0.01	58.0
$C_{4}H_{1}(C_{3}H_{2})_{3}-2,4,6$	1735	-4.75	47 ±2.0	69.5
C ₆ H ₂ (CH ₃) ₃ -2,4,6	1710	4.98	46.4 ±0.7	-61.1
$C_{6}H_{2}Br-4(C_{3}H_{7})_{2}-2.4$	1660	4.78	46 ±3.0	62.0

^a Nujol mulls. ^b In CD₂Cl₂ solution, rel. SiMe₄, centre of quintet. ^c Broad resonance in THF solution, rel. P(OMe)₃,

It is likely that the steric bulk of the R group in reaction 1 prevents further attack by thiol at the molybdenum. If compounds A are treated with an excess of the smaller thiol, R'SH, then they are smoothly converted into *trans*- $[Mo(SR')_2(dppe)_2]$.

Reductive elimination of the bulky thiols is induced by treatment with neutral donors such as CO or PhNC, and gives the known compounds $[Mo(XY)_2(dppe)_2]$ (XY = CO or PhNC) [7] with no sign of insertion into the Mo—H or Mo—S bonds.

References

- 1 C. Veeger and W.E. Newton (Eds.), Advances in Nitrogen Fixation Research, M. Nijhoff and W. Junk, The Hague, 1984; J. Chatt, L.M.C. Pina and R.L. Richards New Trends in the Chemistry of Nitrogen Fixation, (Eds.), Academic Press, London, 1980.
- 2 T.B. Rauchfuss and D.M. Roundhill, J. Am. Chem. Soc., 97 (1975) 3386.
- 3 K. Osakada, T. Yamamoto and A. Yamamoto, Inorg. Chim. Acta, 90 (1984) L5.
- 4 J. Chatt, J.P. Lloyd and R.L. Richards, J. Chem. Soc. Dalton Trans., (1976), 56; C. Shortman and R.L. Richards, unpublished results.
- 5 T. Gains and D.M. Roundhill, Inorg. Chem., 13 (1974) 2521.
- 6 D. Povey and R.L. Richards, J. Chem. Soc. Dalton, Trans., (1984) 2585 and ref. therein.
- 7 J. Chatt, C.M. Elson, A.J.L. Pombeiro, R.L. Richards and G.H.D. Royston, J. Chem. Soc. Dalton Trans., (1978) 165 and ref. therein.